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9.4 An electromagnetic wave

We are going to construct a rather simple electromagnetic field that will
satisfy Maxwell’s equations for empty space, Eq. (9.18). Suppose there
is an electric field E, everywhere parallel to the z axis, whose intensity
depends only on the space coordinate y and the time ¢. Let the depen-
dence have this particular form: !

E = 2E sin(y — vi), (9.22)

in which Ey and v are simply constants. This field fills all space — at
least all the space we are presently concerned with. We’ll need a mag-
netic field, too. We shall assume that it has an x component only, with a
dependence on y and ¢ similar to that of E_:

B = XBy sin(y — vt), (9.23)

where By is another constant.

Figure 9.7 may help you to visualize these fields. It is difficult to
represent graphically two such fields filling all space. Remember that
nothing varies with x or z; whatever is happening at a point on the y
axis is happening everywhere on the perpendicular plane through that
point. As time goes on, the entire field pattern slides steadily to the right,

I There is technically an issue with the units here, because the argument of the sine
function should be dimensionless. We should really be writing it as sin(ky — wt) or
something similar; see the example in Section 9.5. However, the present form makes
things a little less cluttered, without affecting the final results.
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Figure 9.7.

The wave described by Eqgs. (9.22) and (9.23) is
shown at three different times. It is traveling to
the right, in the positive y direction.
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thanks to the particular form of the argument of the sine function in
Egs. (9.22) and (9.23); that argument, y — vt, has the same value aty + Ay
and 4 At as it had at y and ¢, providing Ay =vAt. In other words,
we have here a plane wave traveling with the constant speed v in the ¥
direction.

We’ll show now that this electromagnetic field satisfies Maxwell’s
equations if certain conditions are met. It is easy to see that divE and
div B are both zero for this field. The other derivatives involved are

JO0E, .
curlE = XB_ = XEp cos(y — vi),
y

oE o
— = —vi2Eycos(y — v1);

ot
. 0By .
curl B = -2 5y = —ZBy cos(y — vt),
y

oB A
i —VvXBg cos(y — vi1). (9.24)

Substituting into the two “induction” equations of Eq. (9.18) and cancel-
ing the common factor, cos(y — vt), we find the conditions that must be
satisfied are

Ey =vBy and By = poegvEp. (9.25)
Together these require that
T d Fo=+—20 (9.26)
V= an 0= .
NS VHogo
Using poeg = 1 /c2 these relations become
v==c and Eo = £c¢By (9.27)

We have now learned that our electromagnetic wave must have the
following properties.

(1) The field pattern travels with speed c. In the case v = —c, it trav-
els in the opposite, or —y, direction. When in 1862 Maxwell first
arrived (by a more obscure route) at this result, the constant ¢ in
his equations expressed only a relation among electrical quantities
as determined by experiments with capacitors, coils, and resistors.
To be sure, the dimensions of this constant were those of veloc-
ity, but its connection with the actual speed of light had not yet
been recognized. The speed of light had most recently been meas-
ured by Fizeau in 1857. Maxwell wrote, “The velocity of transverse
undulations in our hypothetical medium, calculated from the electro-
magnetic experiments of MM. Kohlrausch and Weber, agrees so
exactly with the velocity of light calculated from the optical exper-
iments of M. Fizeau, that we can scarcely avoid the inference that
light consists in the transverse undulations of the same medium which
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is the cause of electric and magnetic phenomena.” The italics are
Maxwell’s.

(2) At every point in the wave at any instant of time, the electric field
strength equals c times the magnetic field strength. In our SI units,
B is expressed in tesla and E in volts/meter. If the electric field
strength is 1 volt/meter, the associated magnetic field strength is
1/(3-10%) = 3.33.107? tesla. (In Gaussian units, the electric and
magnetic field strengths are equal, with no need for the factor of c.)

(3) The electric field and the magnetic field are perpendicular to one
another and to the direction of travel, or propagation. To be sure, we
had already assumed this when we constructed our example, but it is
not hard to show that it is a necessary condition, given that the fields
do not depend on the coordinates perpendicular to the direction of
propagation. Note that, if v = —c, which would make the direction of
propagation —y, we must have Eg = —cBy. This preserves the hand-
edness of the essential triad of directions, the direction of E, the
direction of B, and the direction of propagation. We can describe
this without reference to a particular coordinate frame as follows:
the wave always travels in the direction of the vector E x B.

Any plane electromagnetic wave in empty space has these three
properties.

9.5 Other waveforms; superposition of waves
In the example we have just studied, the function sin(y — vf) was chosen
merely for its simplicity. The “waviness” of the sinusoidal function has
nothing to do with the essential property of wave motion, which is the
propagation unchanged of a form or pattern — any pattern. It was not the
nature of the function but the way y and t were combined in its argument
that caused the pattern to propagate. If we replace the sine function by
any other function, f(y — vf), we obtain a pattern that travels with speed
v in the ¥y direction. Moreover, Eq. (9.25) will apply as before (as you
should check by working out the steps analogous to those in Eq. (9.24)),
and our wave will have the three general properties just listed.

Here is another example, the plane electromagnetic wave pictured in
Fig. 9.8, which is described mathematically as follows:

Eoy —(Eo/c)z
E:%, B:L@Zz’ (9.28)
(x4 ct) (x4 ct)
1+ - 14 -
where £ is a fixed length that we have chosen as ¢ = 1 foot for the

purposes of drawing Fig. 9.8. (The speed of light is very nearly 1 foot/
nanosecond.) This electromagnetic field satisfies Maxwell’s equations,
Eq. (9.18). It is a plane wave because nothing depends on y or z. It is
traveling in the direction —X, as we recognize at once from the + sign
in the argument x + ct. That is indeed the direction of E x B. In this
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Figure 9.8.

The wave described by Eq. (9.28) is traveling
in the negative x direction. It is shown

3 nanoseconds before its peak passes the
origin.

t = -3 nanoseconds

wave nothing is oscillating or alternating; it is simply an electromagnetic
pulse with long tails. At time ¢ = 0, the maximum field strengths, E = E
(in volts/meter) and B = Ep/c (which correctly has units of tesla) will
be experienced by an observer at the origin, or at any other point on
the yz plane. In Fig. 9.8 we have shown the field as it was at t = —3
nanoseconds, with the distances marked off in feet.

Maxwell’s equations for E and B in empty space are linear. The
superposition of two solutions is also a solution. Any number of electro-
magnetic waves can propagate through the same region without affecting
one another. The field E at a space-time point is the vector sum of the
electric fields of the individual waves, and the same goes for B.

Example (Standing wave) An important example is the superposition of
two similar plane waves traveling in opposite directions. Consider a wave travel-
ing in the y direction, described by

~ . 2w JEy . 2w
E| =zE(sin T(y —ct), By =x—sin T(y —ct). (9.29)
c

This wave differs in only minor ways from the wave in Eqgs. (9.22) and (9.23).
We have introduced the wavelength X of the periodic function, and we have used
By = Ep/c.

Now consider another wave:

A . 2m Ey . 27
E, = zE( sin T(y + ct), B, = —x—sin T(y + ct). (9.30)
c
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This is a wave with the same amplitude and wavelength, but propagating in the
—¥ direction. With the two waves both present, Maxwell’s equations are still
satisfied, the electric and magnetic fields now being

2 2mct 2 2mct
E:E1+E2:iE0|:sin<¥— nc)—i—sin(ﬂ—{— T[C)],

A A A
B—B, +B JEo [ . (2my 2wt . 2my n 2mct ©9.31)
= =X—|sin| — — —sin| — . .
PR PURY Py y

Remembering the formula for the sine of the sum of two angles, you can easily
reduce Eq. (9.31) to

R . 2my 2w ct . Ep 2wy . 2met
E = 2zZE( sin — cos , B = —2X— cos — sin
A A c A

The field described by Eq. (9.32) is called a standing wave. Figure 9.9 sug-
gests what it looks like at different times. The factor ¢/ is the frequency (in
time) with which the field oscillates at any position x, and 2 c/X is the corres-
ponding angular frequency. According to Eq. (9.32), whenever 2c¢t/) equals an
integer, which happens every half-period, we have sin 2w ct/X = 0, and the mag-
netic field B vanishes everywhere. On the other hand, whenever 2¢t/A equals an
integer plus one-half, we have cos2mct/A = 0, and the electric field vanishes
everywhere. The maxima of B and the maxima of E occur at different places as
well as at different times. In contrast with the traveling wave, the standing wave
has its electric and magnetic fields “out of step” in both space and time.

(9.32)

In the above standing wave, note that E = 0 ar all times on the plane
y=0 and on every other plane for which y equals an integral number of
half-wavelengths. Imagine that we could cover the xz plane at y =0 with
a sheet of perfectly conducting metal. At the surface of a perfect conduc-
tor, the electric field component parallel to the surface must be zero —
otherwise an infinite current would flow. That imposes a drastic bound-
ary condition on any electromagnetic field in the surrounding space. But
our standing wave, which is described by Eq. (9.32), already satisfies
that condition, as well as satisfying Maxwell’s equations in the entire
space y > 0. Therefore it provides a ready-made solution to the problem
of a plane electromagnetic wave reflected, at normal incidence, from a
flat conducting mirror (see Fig. 9.10). The incident wave is described
by Eq. (9.30), for y > 0, the reflected wave by Eq. (9.29). There is no
field at all behind the mirror, or if there is, it has nothing to do with the
field in front. Immediately in front of the mirror there is a magnetic field
parallel to the surface, given by Eq. (9.32): B= —2%(Ey/c) sin(2rwct/\).
The jump in B from this value in front of the conducting sheet to zero
behind shows that an alternating current must be flowing in the sheet (see
Section 6.6).

You could install a conducting sheet at any other plane where E, as
given by Eq. (9.32), is permanently zero, and thus trap an electromag-
netic standing wave between two mirrors. That arrangement has many
applications, including lasers. In fact, with an understanding of the

Figure 9.9 (see p. 444).

A standing wave, resulting from the
superposition of a wave traveling in the positive
y direction, Eq. (9.29), and a similar wave
traveling in the negative y direction, Eq. (9.30).
Beginning with the top figure, the fields are
shown at four different times, separated
successively by one-eighth of a full period.
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E zero at all ¢

B zero at all ¢

Figure 9.10.
A standing wave produced by reflection at a
perfectly conducting sheet.
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properties of thelsimplelplanelelectromagneticlwave,lyoulcanlanalyzelal
surprisinglylwidelvarietyloflelectromagneticldevices,lincludinglinterfer-
ometers,lrectangularlhollow!wavelguides,land strip]lines.



394 Chapter 9  Electromagnetic Waves

9.2.2 @ Monochromatic Plane Waves

For reasons discussed in Sect. 9.1.2, we may confine our attention to sinusoidal
waves of frequency w. Since different frequencies in the visible range correspond
to different colors, such waves are called monochromatic (Table 9.1). Suppose,

4As Maxwell himself put it, “We can scarcely avoid the inference that light consists in the transverse
undulations of the same medium which is the cause of electric and magnetic phenomena.” See Ivan
Tolstoy, James Clerk Maxwell, A Biography (Chicago: University of Chicago Press, 1983).
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moreover, that the waves are traveling in the z direction and have no x or y depen-
dence; these are called plane waves,? because the fields are uniform over every
plane perpendicular to the direction of propagation (Fig. 9.9). We are interested,
then, in fields of the form

E(z. 1) = Boe' ", B(z, 1) = Boe' "), (9.43)

where EO and ﬁo are the (complex) amplitudes (the physical fields, of course, are
the real parts of E and ]~3), and w = ck.

Now, the wave equations for E and B (Eq. 9.41) were derived from Maxwell’s
equations. However, whereas every solution to Maxwell’s equations (in empty
space) must obey the wave equation, the converse is not true; Maxwell’s equa-
tions impose extra constraints on Eo and By. In particular, since V - E =0 and
V - B = 0, it follows® that

(Eo), = (Bo), = 0. (9.44)

That is, electromagnetic waves are transverse: the electric and magnetic fields are
perpendicular to the direction of propagation. Moreover, Faraday’s law, V x E =
—0dB/0t, implies a relation between the electric and magnetic amplitudes, to wit:

~k(Eo), = w(Bo)x, k(Eg), = w(By),, (9.45)

or, more compactly:
. k. -
By = —(z x Ey). (9.46)
1)

S5For a discussion of spherical waves, at this level, see J. R. Reitz, F. J. Milford, and R. W. Christy,
Foundations of Electromagnetic Theory, 3rd ed., Sect. 17-5 (Reading, MA: Addison-Wesley, 1979).
Or work Prob. 9.35. Of course, over small enough regions any wave is essentially plane, as long as the
wavelength is much less than the radius of the curvature of the wave front.

Because the real part of E differs from the imaginary part only in the replacement of sine by cosine,
if the former obeys Maxwell’s equations, so does the latter, and hence E as well.
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The Electromagnetic Spectrum
Frequency (Hz) Type Wavelength (m)
1022 10713
102! gamma rays 10712
1020 10711
1019 10—10
10'8 X-rays 107°
107 1078
10'° ultraviolet 1077
105 visible 10-°
10" infrared 1073
108 1074
102 1073
10! 102
10'0 microwave 107!
10° 1
108 TV, FM 10
107 102
10° AM 10°
10° 10*
10* RF 10°
103 100
The Visible Range
Frequency (Hz) Color Wavelength (m)
1.0 x 105 near ultraviolet 3.0 x 1077
7.5 x 10 shortest visible blue 4.0 x 1077
6.5 x 10 blue 4.6 x 1077
5.6 x 10 green 5.4 %1077
5.1 x 10™ yellow 5.9 x 1077
4.9 x 10 orange 6.1 x 1077
3.9 x 10" longest visible red 7.6 x 1077
3.0 x 104 near infrared 1.0 x 107¢
TABLE 9.1

Evidently, E and B are in phase and mutually perpendicular; their (real) ampli-
tudes are related by

k 1
By = —Ey = —E,. (9.47)
w C

The fourth of Maxwell’s equations, V x B = ugeo(dE/dt), does not yield an in-
dependent condition; it simply reproduces Eq. 9.45.



9.2 Electromagnetic Waves in Vacuum 397

Example 9.2. If E points in the x direction, then B points in the y direction
(Eq. 9.46):

- - L~ 1~ . .
E(z, 1) = Eoe' ™% B(z,1) = —Eoe ",

or (taking the real part)

o 1 o
E(z,t) = Egcos(kz — wt +8)X, B(z,t) = —Epcos(kz — wt +6)y.
C

(9.48)

FIGURE 9.10

This is the paradigm for a monochromatic plane wave (see Fig. 9.10). The wave
as a whole is said to be polarized in the x direction (by convention, we use the
direction of E to specify the polarization of an electromagnetic wave).

There is nothing special about the z direction, of course—we can easily gen-
eralize to monochromatic plane waves traveling in an arbitrary direction. The no-
tation is facilitated by the introduction of the propagation (or wave) vector, k,
pointing in the direction of propagation, whose magnitude is the wave number k.
The scalar product k - r is the appropriate generalization of kz (Fig. 9.11), so

E(r, 1) = Ege' ®™ ) f,

(9.49)
0 L ikron @ & le =
B(r,t) =—Epe (k xn) = -k x E,
c c
where 1 is the polarization vector. Because E is transverse,
fi-k=0. (9.50)

(The transversality of B follows automatically from Eq. 9.49.) The actual (real)
electric and magnetic fields in a monochromatic plane wave with propagation
vector k and polarization n are
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k.r
FIGURE 9.11
E(r,t) = Egcos (k- T — wt + 8) i, (9.51)
B(r,1) = %Eo cos (k- r — wt + 8)(k x A). (9.52)

Problem 9.9 Write down the (real) electric and magnetic fields for a monochro-
matic plane wave of amplitude E,, frequency w, and phase angle zero that is (a)
traveling in the negative x direction and polarized in the z direction; (b) traveling in
the direction from the origin to the point (1, 1, 1), with polarization parallel to the
xz plane. In each case, sketch the wave, and give the explicit Cartesian components
of k and n.
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